Gráficos interactivos con Jupyter Notebooks: tiro parabólico

Ahora que ya he empezado a hacer pruebas con Jupyter Notebook, el siguiente paso que quiero probar es hacer gráficos interactivos. Pues ha resultado ser más fácil y rápido de lo que pensaba.

Partimos de un script python que simula los datos experimentales de una trayectoria parabólica, y calcula la parábola que mejor se ajusta (regresión cuadrática). A partir de la ecuación de la parábola se puede deducir la constante g (=9,81 m/s2). Simulamos los datos experimentales introduciendo un error de ruido en los datos teóricos. Pues bien, con mi gráfico interactivo puedo jugar con el nivel de ruido y con el número de puntos del muestreo, tal com se ve en el video. El código queda de la siguiente forma:

%matplotlib inline
from ipywidgets import interactive
import numpy as np
import pylab as plt
from IPython.display import display, Math, Latex

# tir parabòlic: y = vy*t - .5gt^2
vy = 10 # 10m/s
g = 9.81 # m/s^2
t_max = 2*vy/g

def f(nivell_soroll, num_punts):
    t = np.linspace(0, t_max, num_punts)
    y_or = vy*t - .5*g*t**2
    noise = np.random.normal(0, nivell_soroll, num_punts) # simulem dades experimentals
    y = y_or + noise

    # ajustament a una paràbola
    z = np.polyfit(t, y, 2)
    g_exp = 2.0*z[0]

    t_ = np.linspace(0, t_max, 100)
    y_ = z[0]*t_**2 + z[1]*t_ + z[2]

    fig, ax = plt.subplots()
    plt.plot(t_, y_, t, y, 'bo')
    plt.suptitle("Tir parabòlic. Regressió quadràtica")
    plt.title("y = " + str(round(z[0],3)) + "t^2 + " + str(round(z[1],3)) + "t + " + str(round(z[2],3)) + " -> g exp = " + str(round(g_exp,3)) + " m/s^2")
    ax.set(xlabel='temps (s)', ylabel='y (m)')
    ax.grid()
    plt.show()
    
interactive_plot = interactive(f, nivell_soroll=(0.0, 2.0),  num_punts=(10, 50))
interactive_plot

Otra cosa que me interesa es la manera de exportar estos Jupyter Notebooks a una web, conservando las gráficas y las fórmulas en format Latex (aunque se pierda la interacció con las gráficas). Esto se consigue directamente exportando el Notebook a html:

$ jupyter nbconvert --execute tir_parabolic.ipynb --to html

e integrando este código en una web donde haya más texto y explicaciones, y con la librería Bootstrap.